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Presented here are the numerical results from a computer solution of the time-depend- 
ent thin-wire electric-field integral equation described in Part I of this paper. Both 
radiation and scattering problems are considered. The present results are validated by 
their Fourier transform to the frequency domain, where they are compared with in- 
dependently computed data. A space-time sampling criterion is derived for predicting 
the highest frequency to which the time-domain calculations are accurate and found 
to be in accord with the numerical results. The time domain results are also shown to 
provide informative insights into the radiation characteristics of specific structures. 
Recommendations for further work are also presented. 

I N T R O D U C T I O N  

In  Pa r t  I o f  this pape r  [1], we deve loped  a t ime-dependen t  electric-field integral  
equat ion  app rop r i a t e  for  s tructures composed  o f  perfect ly  conduct ing  thin  wires. 
We  in t roduced  a numer ica l  technique for  solving these equa t ions - -conc i se ly  
descr ibed as po in t -ma tch ing  in space - t ime  with second-order  Lagrang ian  inter-  
pola t ion-bas is  funct ions  and expanded  on this in detail .  W e  also discussed the 
advantages  and d isadvantages  o f  t ime-domain  analysis,  p rov ided  compu ta t i on  t ime 
est imates for  var ious  opera t ions ,  and  derived ra t ios  depict ing the advan tage  o f  
t ime doma in  over  f requency d o m a i n  analysis.  

* Work performed under the auspices of the U.S. Atomic Energy Commission. 
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In this part we are presenting numerical results that typify time-domain scattering 
and antenna calculations and comparing these results with independently obtained 
data. The details of each calculation are given to help others who wish to compare 
results. 

It  is often said that the use of numerical techniques lessens the physical insight 
into a given problem. In an attempt to dispel this feeling we have, in specific 
instances in this paper, delved into the details of the computed temporal responses 
and have extracted certain features of the radiation phenomenon. In this manner, 
the analytical tool which has been developed is shown to also provide a meaningful 
exposition of the physics of the problem and, thus, lead to a deeper understanding 
of the mechanisms involved. The value of this type of information to physicists 
and engineers is inestimable. 

In each of the cases to be considered, the wire structure is excited by an electro- 
magnetic pulse. For scatterers, this pulse is in the form of an incident wave. For 
antennas, it is a time-dependent voltage across a finite source-region. The time- 
domain electric-field integral equation is then solved numerically to provide a time 
history of the induced current. From this, time-dependent radiated fields can be 
computed; or if there is an interest in frequency-domain information, the Fourier 
transform can be used to deduce the spectral characteristics of quantities such as 
input admittance. The capability to transform the time-domain data into the 
frequency domain also facilitates a verification of the computed results. Since 
experimental and independently computed time-domain results are relatively 
scarce, it is much more convenient to make the comparisons in the frequency 
domain, where there are ample experimental data and independently computed 
results. 

This paper includes a study of the possible sources of error in this time-domain 
analysis technique. The requirements on space and time sampling densities are 
discussed and are shown to have a profound effect on the computed results, 
particularly with respect to the high frequency content of the waveforms. The 
highest frequency for which accurate results can be expected for a given structure 
is predicted using a space-time sampling criterion. The high frequency cut off in 
numerical accuracy as well as some lesser problems arising in the numerical 
evaluation are discussed, and it will become clear that each is surmountable at the 
expense of  increased complication, computer time, or computer storage. 

EXCITATION FUNCTION 

Equation (8) of Part I strictly holds only for fields that are continuous and have 
a continuous derivative in space-time. For this reason we are somewhat restricted 
in our choice of excitation functions. However, this does not impose a severe 
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limitation, since most physically realizable sources have these characteristics of 
continuity; that is, we rarely find sources in nature that are truly discontinuous. 

The excitation most commonly used in time-domain analyses via integral 
equations is the Gaussian pulse [2], which not only satisfies the continuity con- 
ditions but also reasonably approximates an impulse. The functional form for a 
Gaussian traveling wave is given by 

G(z, t)  = exp{- -a2[(z /c )  - -  (t - -  tmax)]2}, (24) 

where z is the direction of  propagation, c the propagation velocity, and a the 
spread parameter for a Gaussian waveform. 

There might be an objection to using this time-dependent field as a source of 
excitation because its spectrum, 

g(Z, CO) = (7-i'1/2/a) exp(--oJ2/4a ~) exp{- - f io[ (z /c )  -Jr- tmax]}, (25) 

has a zero-frequency component. Although this is not a realistic description of  a 
propagating wave generated by a realizable source (because the time integral of the 
radiated field of a finite source distribution which is zero for t < 0 and approaches 
zero for t --+ oo must be zero), it does not violate any of the basic premises assumed 
in deriving Eq. (8). Furthermore, the ~o = 0 component of the excitation spectrum 
(the dc component) induces only a dc current component, which in turn does not 
contribute to the radiated field (as will be seen shortly). In fact, the use of a 
Gaussian pulse simplifies the calculations somewhat and allows us to estimate the 
impulse response in the sense of network theory, where the impulse response 
characterizes the network. 

In some cases, we use another form of  excitation: the time derivative of the 
Gaussian pulse. In the following examples, this form is applied only to a loop 
antenna where the loop's closed circuit characteristic can lead to a circulating 
current if the antenna is excited by a source voltage with a dc component. As will 
become obvious, the Gaussian pulse does not pose any special problems in calcu- 
lating the far field, since the radiated field depends only on the time derivative of  
the antenna current at retarded times. 

DETERMINING THE RADIATED FIELD 

In the forthcoming time-domain calculations, we compute the induced current 
according to Eq. (8) (Part I) but in a form suitable for numerical computation 
(such as Eq. [14], Part I). For  antennas and scatterers alike, the magnitude of the 
incident or applied field t EA( ~, t)J is specified in V/m,  with the distinction that this 
field, in the antenna case, is generated by a finite voltage V8 applied over a finite 
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region A of the perfectly conducting structure, i.e., I s  A [ = V s / A .  The radiation 
field due to the induced surface current density is then calculated from 

Er,~(?, to) = l i m r  (t~o/4~rr f,  { [ (~ /~)J (~ ' ,  ~)] - -  [(~/~T)J(~', ~-)" ' ]  ~)da ') ,  (26) 

where r is a distance f rom a suitably chosen origin, 2' is a position vector in source 
coordinates, J(~' ,  t) is the induced current distribution on the surface of the 
conducting structures with elemental area da' ,  and (~ /~)3(~ ' ,  , )  represents the 
time derivative of  the induced current at a given point on the antenna evaluated at 
the retarded time T = to + ~ �9 ~' >/0 .  

For  a wire structure, the current density J(~' ,  t) is replaced by I ( s ' ,  t)g, where 
I ( s ' ,  t )  is the linear current in the axial direction, and da' is replaced by the incre- 
mental length ds' .  Note that the time variable for the far field expression, denoted 
by t o , is the real time t minus the propagation time from the origin to the far field 
point; i.e., to -~ t - -  (r /e) .  

Clearly this extraction of the propagation time from origin to field point can 
result in a radiated field at the far field point for to < 0. For example, if there is a 
point on the structure which supports a current at ~- ~- 0 with ~' v~ 0, and if 

�9 ~' > 0 ,  thento < 0 .  
On the other hand, the origin of the time coordinate for the radiated field could 

also be defined as the time a wave first reaches the observer. In this case, we define 
the observer time as to = t - -  t ', with t '  representing a propagation time as yet 
undetermined. Clearly if  t o ~- 0 represents the starting point, then t '  is defined by 

t '  ~- r /c  + min[~- - -  (~. 2'/c)], 

with the additional condition that ~' and ~- are such that Y(2', ~-) v ~ 0 for t >~ 0. 
In this paper, we compute the radiated fields according to a time scale defined 

by to = t - -  (r /c) .  So that t o ~- 0 represents the initial time of  observation in the 
far field, we introduce the additional shift, if required, when plotting the fields. 

SPECTRAL CHARACTERISTICS 

The system's response to a waveform of arbitrary shape can be determined from 
its response to a known waveform. For  instance, let us assume that  a response such 
as induced current or radiated field, denoted 0(t), has been computed for a known 
input waveform G(t ) .  For simplicity here, we consider only functions of  a single 
variable t which are nonzero only for t ~ 0. For a linear system 

o(t) = fo GO-) H(t --  ~-) d~-, (27) 
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where H(t) is the system response to a delta function (impulse response) but is thus 
far unknown. In the frequency domain, the transfer function--a unique description 
of a linear system--is given by 

H(o~)  = [0(~o)] / [6(~o)] ,  

with 0(to) and G(oJ) the Fourier transforms of 0(t) and G(t), respectively. 
If the same system is excited by a waveform I(t) the new response is written 

or equivalently as 

F(t)= f]I(T) H(t--  r) dr, 

(28) 

(29) 

F(oJ) = H(oJ) I(oJ). (30) 

Clearly, having once determined the transfer function H(~o) between two specific 
variables, we can calculate the response to any waveform by simple mathematical 
operations. 

As an example, the knowledge of the current I(s', t) induced on an antenna by 
a source Vs(t) allows us to determine the structure's spectral characteristics. The 
input admittance of the antenna, which is defined by 

Y(co) = Is(co)~ V~(co), (31) 

where Is(oJ) and Vs(o~) are the source current and voltage spectra, respectively, is 
easily determined. From a single time-domain calculation, then, we have available 
the antenna input admittance over a range of frequencies. The accuracy of this 
computation, taking into account the discretized knowledge of I(t) and the behavior 
of Vs(oJ), will be considered in a later section. 

The impulse response of a structure can thus be determined by computing the 
structure's response to a known (band-limited) waveform and determining the 
ratio of the spectra. The impulse response can also be estimated, for example, by 
using a sufficiently narrow Gaussian that approximates the delta function. Bear in 
mind, however, that this kind of approximation may not be generally acceptable 
when high accuracy results are required. 

SOURCES OF ERROR 

The integral equation derived in Part I is solved by a point-matching technique 
in space-time and, as such, is subject to discretization errors. These errors arise 
because the equation is enforced at only a finite number of discrete points in space 
and time. The applied field, is, therefore, represented by a sequence of points: i.e., 



TIME DOMAIN: NUMERICAL RESULTS 215 

in a finite-dimension subspace of the infinite-dimension space in which the function 
is defined. 

A fundamental requirement for accuracy of the solutions is that the sampled 
function truly represent the applied field in space and time. Furthermore, the 
sampling must be dense enough for the current variation in space-time to be 
accurately represented by the Lagrangian interpolation scheme of Part I. Well 
tested guidelines for sampling densities have not yet been established for space-time 
sampling, but we gain some insight into the requirements from guidelines set forth 
for time-harmonic methods [3, 4]. 

We now proceed to investigate how time and space sampling rates are interrelated 
and how they can affect accuracy for the high frequency components in a simple 
case. 

The temporal sampling requirements can be determined by applying the 
Shannon-Kotelnikov theorem, which states that a band-limited function s(t) is 
uniquely characterized by samples of s(t) at intervals (1/2fc) apart if the sampling 
frequency fc is equal to or greater than the highest positive frequency fmax in the 
s(t) spectrum. Although many of the spectra of interest do not have a finite fmax, 
we can, nonetheless, apply the sampling theorem with fraax denoting a point in the 
spectrum where its magnitude is much less than the maximum value. This then 
assures that the aliasing error due to frequencies above f ,  is negligible. 

From the temporal sampling theorem, we have 

so that 

o r  

f~ = 1/(2At) 

f =  c/?t ~fmax ~ f e  = 1~(2At) (32a) 

1/)~ = 1~(2cAt). (32b) 

This equation defines the relationship between the temporal step size and the 
frequencies or wavelengths that can be included accurately in a time-domain 
analysis and is established by considering the time-frequency relationship. 

Equation (32b) is not the only criterion which must be established, since it does 
not consider the spatial sampling requirements. For the case where all segments Az 
are of the same size, 

Az  = L/N~,  

where N8 is the total number of spatial samples and L is the total wire length. If we 
introduce a notation from the frequency domain, where it is common to speak of 
samples per wavelength (Na'), we can write the number of spatial samples as 
N8 -~ Na'L/A, so that 

L/)t = (1/N~')(L/Az). (33) 

58xh2]2-5 
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Note that we have not as yet specified any relationship between Na' and the 
accuracy to be expected when solving an integral equation. However, we can 
state at this point, that from frequency-domain considerations, we choose an N a' 
for a class of structures which will provide a given degree of accuracy in the 
frequency-domain solution [3]. I f  we refer to this value of Na' as Na and observe 
that the solution will be accurate as well for L/)~ less than the value calculated from 
Eq. (33), we define the sampling requirement dictated by spatial considerations as 

L/A ~ (1/Na)(L/Az). (34) 

Clearly an accurate solution in the time domain requires that the length-to- 
wavelength ratios of all significant frequencies in the excitation function spectrum 
satisfy both Eqs. (32b) and (34). In compact notation, we then have 

where 

L/)~ ~ min[L(2cAt) -1, L(NaAz)-l], 

min(a, b)  = a ,  a < b 

b, a > b .  

(35) 

Let us now write At as an interval determined by the number of time steps (Nr) 
in a reference time span (T); that is, cat = cT/Nr. In particular, this cT can be 
chosen to be the length of the excitation pulse or, in case of a pulse of infinite 
extent, as the length between the two points containing the most significant part 
of the energy. Then Eq. (35) becomes 

L/A <~ (L/cT) Nr min[�89 (~Na)-l], (36) 

with ~ ---- Az/(cAt). The first part of the min(a, b) term refers to the temporal 
sampling requirement and the second part to the spatial sampling requirement. 
The maximum value of L/,~ for which accurate results can be expected is then found 
from 

(L/A)max = (L/cT) Nr min[�89 (~Na)-l]. (37) 

The evaluation of Eq. (37), to establish the limiting value of L/A for which the 
results will be accurate, requires a determination of the minimum of two quantities. 
In the interest of efficiency, it is best that both quantities be equal to the minimum, 
for then the number of samples in space and time are being minimized simul- 
taneously to achieve the desired accuracy. Such a condition is specified by 

Az = 2cAt/Na. (38) 
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Since Na is generally greater than 2 (and for straight wires, circular rings, and 
other smoothly curved structures, Na ~-~ 6-10 for 10 ~ accuracy), Eq. (38) shows 
that Az is generally less than cAt. This condition usually cannot be realized unless 
an interpolation scheme is used, since interactions between two spatial points 
within the same time step cannot be accurately modeled without time inter- 
polation. The intent of the interpolation, of course, is to represent the dependent 
variable (the current) accurately over the entire space-time cone. 

Besides the foregoing errors--which result from inaccuracies in the solution of 
the integral equation for the portions of the response pertaining to the high 
frequency part of the spectrum--there are others that emerge in the subsequent 
operations. These deserve some comment. 

The high frequency components of the spectrum, as previously noted, are most 
subject to error in the time-domain calculations. Therefore, when computing a 
transfer function like Y(co), one must be careful to observe all the high frequency 
limits because a V~(co) with rapid roll-off will heavily weight the high frequencies. 
Small inaccuracies, thereafter, could be greatly amplified, leading to inaccurate 
results. 

Any discussion of errors from the Fourier transformation is beyond the scope 
of this paper. Moreover, these should not be of concern when the fast Fourier 
transform is used properly. Our procedure in this respect has been as follows: 

The frequency-domain results are taken from time-domain data by Fourier 
transformation by use of the fast Fourier transform algorithm. The data records 
for that operation have involved 512 time steps, of which 240 have been taken 
from the calculated time history. The balance has come from extrapolation of the 
results. Since the time-domain data usually have indicated a late time ringing at 
a single frequency with exponential damping, the technique has been to use the 
late samples in the calculated records to determine y and co in e -~ sin cot. 

This automated procedure involves searching out successive maxima in the data 
record and then searching for intervening minima. If the absolute value of the 
minimum does not satisfy the e -'~ envelope (determined by fitting maxima), 
later portions of the data record are tested. If the test is satisfied, the value of W is 
computed. It should be noted that although the method readily discerns waveforms 
containing single frequency components of significantly different phasing (as in the 
early history in Fig. 4), it fails when the phase differences are small (as in the very 
late history in Fig. 4). Therefore, the values of ;r and W as fit to the late history 
contain some errors although these must be small as evidenced by the data to be 
presented. In order to circumvent these problems, it would be preferable to fit a 
Fourier series (with exponential damping) to the data, but this is relegated to 
future work. In all cases presented in this paper ~, has been large enough for the 
record to include sufficient samples for late times (essentially equal to zero) 
to minimize the aliasing problems in the Fourier transform. 
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NUMERICAL RESULTS 

In  this section, we shall consider the results of  t ime-domain  calculations. Our  
a t tent ion will be directed first to an tenna  structures and  then to wire scatterers. 

Antenna Structures 

The first an t enna  to be discussed is the center-fed l inear dipole. The length of  
this an tenna  (L) is 1 m, and  its radius- to- length ratio is 0.00674 (i.e., 

~ 2 In L/a = 150). The tempora l  behavior  of  the source voltage impressed 
over a region A = L/11 a round  the center of  the an tenna ,  in volts, is 

V,(t) = exp[--a~(t - -  tm~x)~], (39) 

with a = 1.5 • 109 sec -~ and  tma,, = 1.43 • 10 -a see. The impressed electric 
field, in V/m, is then 

I EA(t)I = V,(t)/A = (1 l/L) exp[--a~(t  - -  tmax)2]. (40) 

.< 
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(a) Source current 

12 Fourier transform of time response 
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{ s 4 +  

, !UL 
0 1 2 3 I / I l l  112 I,./3 

L/~t 2 - 4 - ]  ~ I /  

x King-Middleton results L/~t 

(b) Input admittance 

FtG. 1. Linear antenna with Gaussian source where the wire length is 0.5 m, the ratio of 
wire radius to length is 0.00674, the source width is L/ll, and the number of spatial segments 22. 
V, = exp[--ag(t -- tmx)q with a ----- 1.5 x 109 and tmax = 1.43 x 10 -9 sec. King-Middleton 
results are plotted for comparison. 
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The antenna is subdivided into 22 spatial segments, the center two of which 
serve as the source region. The temporal step size (At) is set equal to Az/e = L/22c, 
with dz  the spatial segment length. In this case, At ~-- 1.515 • 10 -l~ sec. Because 
the Gaussian pulse has infinite support in the time domain, the starting point 
(t = 0) is defined, for practical reasons, at some reasonable level not equal to zero. 
Hence, t = 0 is generally chosen to correspond to the point on the leading edge of 
the Gaussian pulse which is 1 9/0 of its maximum value. 

Figure 1 typifies the results we obtain from the calculations which can be 
performed. In the upper part of the figure, the source current is plotted against 
normalized time; the horizontal axis is subdivided into length units normalized 
to the propagation velocity in free space. If  we were to superimpose the input 
Gaussian pulse, the voltage and current would be seen to behave identically up to 
the first peak (LIe = 0.5); thereafter, the source current decays more rapidly than 
the input pulse. The explanation for this behavior in the region 0.5 ~ L/c ~ 1.0 
can only be electromagnetic coupling between the source region and other portions 
of the structure; it cannot be due to the reflected current pulse because the traversal 
time from source to end and return is approximately L/c see. 

The second major peak (LIe ~ 1.5) represents the arrival of the peak of  the 
reflected current pulse at the source. Subsequent peaks occur at approximately 
odd integer multiples of L/2c. The slight discrepancies in current variation from 
these integer multiples can be attributed to the fact that the propagation velocity 
on the structure is somewhat less than that of free space. 

The bottom part of Fig. 1 presents the input conductance and susceptance Go 
and Bo versus the normalized length (L/A), computed from the ratio of Fourier 
transforms of the source current and source voltage. For comparison, values from 
the King-Middleton theory [5] are included. From Eq. (37), with cT---- L and 
NT = 22, the (L/A)max can be determined by using Na = 6 from Miller et al. [1]. 
For  the structure under consideration, (L/A)max ~ 3.5, as based on the smaller 
term in the min(a, b) term in Eq. (37). Since the space sampling term dictates 
(L/A)max, we refer to this case as space-sample-limited. The discrepancy between 
the transformed and King-Middleton results for L/A > 3.5 was evident and is not 
included in the figures. 

Figure 2 is a computed time history of  the antenna current over half the sym- 
metrical, center-fed structure. It is not the current for the case shown in Fig. 1 but 
rather that for an identical dipole excited by a pulse with a spread half that for 
Fig. 1. This history is included for illustrative purposes. The dark horizontal lines 
represent the extent of the antenna, while the numbers identify the instant of  time 
for which the current is plotted. Each integer refers to a multiple of 
At = 0.152 • 10 -9 sec so that L/c ---- 3.33 • 10 -9 sec ~ 22At. The pulse's 
progression along the structure is followed from the time of its first appearance at 
the source through its first reflection at the end and subsequent second appearance 
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at the source. It is from data like these, which are a direct result of the solution of 
the integral equation in space-time, that plots of the type shown in the upper half 
of Fig. 1 are derived. 

] t ~  2T 
2 Tirne 12 22 

Space 1 3 ~  

3 ~ 2 3 _ , . , ~ ~  

4 ~-- 14 / " ~  24 

FIG. 2. Time history of dipole antenna current. 

Figure 3 plots the broadside radiated field for the center-fed linear dipole. The 
temporal response, from the computed time history of the current and Eq. (26) 
specialized to wires, is shown in the upper half; the frequency-domain response 
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is shown in the lower half. The time scale in units of  dipole length divided by the 
free-space velocity starts at L/c ---- 0, which is the instant the radiated field arrives 
at the observation point. The radiated field is driven by the temporal derivative 
of the antenna current, as one would expect from inspection of  Eq. (26). The 
predominant radiation comes from the source region (when the pulse first appears) 
and from the ensuing reflections which take place at the antenna ends. 

O. 20- ]  

0 .15 - -  

-a 0 .10 - -  

O. 05 -- 

-0.05 -- 

- 0 . 1 0 -  

-0 .15 - -  

I , L ,  i'X,,, ,,--.. ,.___ 

(a)  Time domain 

.a 

0.8] ~ ~ - F o u r l e r  t . . . .  form of  t~rne response 

~  ,xe'x 
~ . . . .  ~ co,c.,o, o= 

0 / 1 ~  1 ,~xf  , I ~ 
0 1 2 3 

(b)  Frequency doma;n 

FIG. 3. Broadside radiated field of a linear antenna. 

We will discuss this phenomenon in more detail when we consider off-broadside 
radiation. At this point, it is sufficient to point out that the field prior to arrival 
of the radiation due to end reflection is proportional to the negative of the source- 
region current. 

In the bottom half of Fig. 3, the Fourier transform of the broadside radiated 
field is used for comparison with independently calculated results. The independent 
results inthis particular case were obtainedby a collocation solution of the thin-wire 
electric field integral equation [6] at the indicated frequencies. Again, discrepancies 
were noted for L/A > 3.5. 

Figure 4 is a temporal display of  the radiated field at an angle 40 ~ from broadside. 
It is included to illustrate the effective active regions of the antenna and to point up 
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the influence of this rather simple radiating system on the radiation of a Gaussian 
pulse. 

As previously mentioned, the radiated field is a result of  the temporal variation 
of the antenna current and is computed by a spatial integration over retarded 
values of  the temporal derivative of current. I f  we envision the antenna current 
distribution to be a traveling wave with a Gaussian shape like that in Fig. 2, then 
the required time derivative is obtained f rom the Gaussian which, in the limit of  
narrow spread, becomes a doublet (the derivative of  the Dirac delta function). 
Although for the case shown the Gaussian derivative is not very narrow relative 
to the antenna length, the use of  the doublet representation points out the salient 
features of  the phenomenon. 

-o 

0 .20-  

0 .15-  

0. I0- 
O. 05-- 

0- 

-0.05-  

-0 .10-  

-0.15 

I" L "I 

AA Source region ~ 

Time -- L/c 

FIG. 4. Radiated field of a linear antenna with Gaussian source time dependence. The radiated 
field is at an angle 40 ~ from broadside. 

Figure 5 is included to illustrate further the effects seen in Fig. 4. As the wave first 
appears on the structure t = 0 §  it causes the radiation seen at early times in 
Fig. 4. We refer to this first appearance of  the wave at the observation point as the 
reference time, to �9 Once the peak of the Gaussian is passed, the derivative changes 
sign and serves to quench this source of radiation. We refer to the arrival of  this 
peak as tl �9 

To account for the next peak in the radiated field, at t - -  h ~ L / 2 c  sin 0 where 
sin 0 accounts for observing at an off-broadside position, let us first consider the 
boundary condition at the end of the antenna. Because the current is zero, the 
reflected wave must be of  opposite polarity to the incident wave. As a result, the 
Gaussian suffers a continuous sign reversal at the end, as evidenced in Fig. 2. 
The time derivative of  the current, which for the Gaussian traveling wave along the 
structure is similar to a doublet and, therefore, causes a negligible radiation field, 
reaches a point in time near the end of the antenna where its shape, instead of 
approximating a doublet, approximates the absolute value of the doublet 
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( t  - -  t x ~ L / 2 c  sin 0). This causes significant radiation from the region near the 
antenna end and results in the second peak. The third peak is due to radiation 
from the other end of the antenna, while all subsequent peaks are due to reflections 
from alternating ends of the antenna as the wave travels back and forth. 
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Schematic representation of the radiation mechanism. 

In general, the time of arrival of the peaks is given approximately by 

t~ = q -Jr (L /2c ) (n  - -  1 - -  sin 0) n, even, 

tn = tl  -k (L /2c ) (n  - -  2 4- sin 0) n > 1, odd. 

The time-dependent behavior of the loop antenna is considered in Fig. 6. For 
this particular case, the excitation voltage is assumed to have a temporal variation 
described by the time derivative of the Gaussian pulse. This particular excitation 
is chosen because it does not have a zero-frequency component and, therefore, 
does not excite the circulating current that would exist on the closed-circuit 
structure. The loop is modeled by 22 straight-line segments. 
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The upper part o f  Fig. 6 shows  the source current as a function o f  time. The 
current shape here is very similar to that o f  the exciting voltage for P/c < 0.5; 
all perturbations to this close tracking are due to e lectromagnetic  coupl ing effects 
and not  to the arrival o f  the port ions o f  the pulse which  have circulated around the 
loop.  

The input admittance o f  the loop  antenna, plotted in the lower part o f  Fig. 6, 

i 

3- 

2 -  

1 -  

I 

6 -1 -  

- 3 -  

- 4 -  

224 

Source reglon p 

j - -  [ 

Time - -  P/c 

(a) Source current 

. ~ -  Fourier transform of time response 7 

X 4 -  4 

2- 2d i l  /'.~ 

o _ , , o  ' t !  
P/~ -2 

P/~. .... 
calculation />~ 

+11 
(b) Input admittance 

FIG. 6. Loop antenna with time derivative of Oaussian source where the circumference 
of the loop is I m, the source width is PIll, and the number of spatial segments 22. V, = 2a ~ 
( t -  tmax) exp[--a~(t-  tmax) ~"] with a = 1.5 x 109 and tmax = 1.43 X 10 -9 sec. Frequency- 
domain calculations are plotted for comparison. 
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shows excellent agreement with the independently computed results for P/,~ <~ 2.5, 
beyond which the time-domain derived values progressively depart from the correct 
results. For loop structures, modeling guidelines indicate that spatial samples in the 
frequency domain must be less than )t/10 in size (Na = 10), so the response of  the 
highest frequency component  of  the incident pulse which can be accurately deter- 
mined according to Eq. (37), with cT  ~ P, is approximately (P/)gmax ~ 2.2. The 
(P/A)max values from theoretical considerations and our numerical results are, thus, 
in close agreement. Furthermore, since L / z c d t  > L /NAz ,  we conclude that this 
case is also space-sample-limited. 

The loop antenna calculation was repeated, using the Gaussian pulse of  the 
previous computations.  Although the temporal response of  the source current was, 
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FIG. 7. Zig-zag antenna with Gaussian source time dependence; 22 spatial segments. The 
total wire length is 1 m and the dipole length 0.5 m. 118 = exp [--a2(t -- tmax) 2] with a = 1.5 x 109 
and tmax = 1.43 x 10 -9 sec. Frequency-domain calculations are plotted for comparison. 
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of course, quite different in this case and, in fact, reached a steady-state nonzero 
value for large time, all responses akin to spectral transfer functions (such as input 
admittance) agreed closely with the results obtained from the Gaussian derivative. 
This particular calculation can be viewed as a demanding test of the numerical 
procedure, and considering that the steady-state current became numerically 
stable in the fourth decimal place, the overall numerical accuracy of the approach 
is evidently quite good. 

The final antenna to be treated here is the zig-zag dipole antenna excited with a 
Gaussian source. The computational results are shown in Fig. 7. By virtue of  the 
cusps in the wire geometry, this antenna represents a particularly stringent test of  
the Lagrangian interpolation scheme described in Part I of this paper. 

For  such a structure, the effects of a current in a given segment during a given 
time step can be felt in adjacent spatial segments during the same time step using, 
as we have here, c A t  ~ A z .  Also, the high Q factor of this type of structure tests 
the ability of  the computer program to predict not only late time behavior but also 
the highly peaked spectral transfer function (input admittance). 

The source current behavior for this structure is plotted in the upper part of 
Fig. 7, while the input admittance is plotted in the lower part. The agreement is 
quite good for L/2t < 1.3, L being the total wire length. With modeling guidelines 
for zig-zag structures indicating that Na = 20 is required for relative errors less 
than 10 ~ ,  we find from Eq. (37) that (L/A)max ~< 1.1 is the approximate limit for 
accurate results in the frequency domain, again in reasonable agreement with the 
calculated data. As before, the results are space-sample-limited. 

Wire Scat terers  

The technique for determining the behavior of a given wire structure operated as 
a scatterer of an electromagnetic pulse in the form of a plane wave differs only 
slightly from that for determining its behavior when operated as an antenna. The 
difference lies only in the form of the applied field E A. 

For an antenna, E A is specified as due to a time-dependent voltage, that is, 
as a tangential electric field over a region at the surface of the wire. For scatterers, 
the applied field can illuminate the entire structure and is described as a Gaussian 
traveling wave, expressed in V/m,  of the form 

EA(Z, t) = ~ exp{- -a2[z /c  - -  (t - -  tmax)]~}, (41) 

where the field x is polarized and the propagation direction is given by s 
The radiated or scattered field is determined from using Eq. (26) and the com- 

puted time history of current. As described previously, an additional temporal 
transformation is introduced at the far-field point in order that the zero time point 
correspond to the instant a wave first reaches that observer. 
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The parameter of  interest in the frequency domain is the radar cross section 
normalized to the square of  the wavelength (normalized RCS), expressed in dB. 
It is also the most  commonly  available quantity for comparison of  scattering 
results. The normalized RCS is defined by 

~2 I Erad(~)12 
= =c 2 lEnA(co)[z , (42) 

with the dependence of  cr/h 2 on the incidence angle, observation angle, and 
polarization all suppressed. It is computed from the quotient of  the spectra of  the 
radiated field and the incident field. These in turn are determined by taking the 
Fourier transforms of  the radiated field and the incident field. 

Figure 8 shows the responses of  a dipole operated as a scatterer for an incident 
electric field polarized along the wire axis, with the scattered field computed in the 
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FtG. 8. Scattering of a Gaussian pulse by a dipole where the ratio of wire radius to 
length is 0.00667, the dipole length is 1 m, and the number of spatial segments 11. E A = 

e x p ( - - a 2 [ z / c  - -  ( t  - -  tmax)] ~} w i t h  a = 1.5 5< 109 a n d  tmax = 1.43 5< 10 -9  sec. Frequency-domain 
calculations are plotted for comparison. 
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backscatter direction for broadside incidence via Eq. (26). The constants associated 
with the Gaussian incident field are defined in the figure. From these constants, 
it is easily seen that the spatial extent of  the applied pulse is approximately equal 
to the length of the scatterer. The normalized radar cross section is then computed 
from the Fourier transforms of the radiated and applied fields and Eq. (42). 

A comparison with independent frequency-domain calculations is provided in 
the lower part of this figure. Note that the results begin to diverge for L / A  ~ 1.5. 

This observation is consistent with the results already obtained for antennas, 
based on the space-time sampling density and the excitation pulse width in space 
relative to the structure's size. 

T ~ m e  - -  L/c 

O - -  

-10 

J 

o -20 - 

-30 

x 

LxX xxxXX 
! 

~ Fourler transform 
of tlme response 

I I 
1 2 3 

p/x 

(a) Time response 

x Frequency-domaln 
calculation 

(b) Frequency response 

F/o. 9. Scattering of a Gaussian pulse axially incident on a ring whose circumference is 2 m. 
The ratio of wire radius to ring radius is 10 -3 and the number of spatial segments 12. In this case, 
At  = 3.03 x 10 -x~ sec = dP/c,  and E a = exp{--a2[z/c -- (t -- tmax)] ~} with a = 1.5 x 10 a and 
traax = 1.43 X 10 -a sec. Frequency-domain calculations are plotted for comparison. 

Figure 9 illustrates the response of a ring, modeled by a 12-sided polygon, to an 
axially incident Gaussian pulse. As evident from the time response (upper part of 
the figure), the far field of the loop settles into a ringing mode very rapidly and 
oscillates at the fundamental frequency (with exponential decay). This indicates 
a sharp peaking in the frequency response, and, indeed, this is observed in the 
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lower part  o f  the figure, where the results are compared  with independent  data. A 
deterioration is again noted at the higher frequencies, b rought  on by the finite 
number  of  samples. Using Eq. (37) with P / c T  ~ 2, Nr  = 12, and Na = 10, we 
obtain (P/A)max ~ 2.4, with spatial sampling the limiting factor. ~176 
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FIG. 10. Scattering of a Gaussian pulse by two concentric rings where the circumference of 
the large ring is 1 m, the ratio of ring radii is 1.25, the ratio of wire radius to ring radius is 0.03, 
and the number of spatial segments (each ring) is 12. In this case At = 2.777 • 10 -l~ sec, and 
Ea = exp{_a2[z /c  _ (t  -- tmax)] ~} with a = 1.5 • 109 and tmax = 1.43 • 10 -9 sec. Frequency- 
domain calculations are plotted for comparison. 

As an extension of  the single-loop results, we show in Fig. 10 the responses o f  
two coplanar,  concentric rings to an axially incident Gaussian pulse. A n  amplitude- 
scaled version of  the incident pulse is shown in the time response. The temporal  
behavior  o f  the radiated field is somewhat  more  erratic than the single loop for  
early times (t < 2.5 P / c )  but  settles down to a simple ringing mode  for  later times. 

Another  observed characteristic is the much lower field strength seen in the 
double- loop case for  times greater than 1.5 P / c .  The reason for  this will become 
obvious when we look at the t ime-dependent currents on the rings. The normalized 
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radar cross-section curve exhibits reasonably good agreement with independent 
results for P/A < 1.0, deterioration occurring above that point. A frequency shift 
seems to have taken place, but aside from this it is encouraging to note that the 
null in the response is well predicted. The maximum P/,~ for accurate results is 
computed according to P/cT ~ 1 and Na ~ 10 so that (P/A)max ~ 1.2. Note that 
this falls near the deep null in the normalized RCS. 

FIG. 11. 
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In Fig. 11 we see the current at the point on each ring where the incident magnetic 
field is orthogonal to the ring as a function of time. For  very early times, the 
currents are independent; that is, there is no interaction between the rings. The 
currents, thus, start out in phase but  lose their phase correlation as the combination 
of mutual electromagnetic coupling between the rings and their differing natural 
frequencies take effect. In fact, for times greater than 1.5 P/c, the currents are 
almost in phase opposition (though differing somewhat in amplitude and period), 
thus, giving rise to oscillations similar to a transmission line (push-pull) mode. 
The strong peak in the scattered fields at early times and its rapid decay to a lower 
oscillation level are thereby explained. 

As a final example of time-domain calculations, we show in Fig. 12 the response 
of a circular crown band to an axially incident Gaussian pulse. The crown band is 
a zig-zag wire structure 85 in. in length, wrapped on the surface of  a cylinder 
25.13 in. in circumference. This example is particularly well suited to our discussions 
since it represents a stringent test of the ability of the interpolation scheme 
described in Part I to allow arbitrary space-time sampling. In fact, for this case one 
can easily see that cAt > AR; that is, the distance a wave propagates in one time 
step is greater than the distance between sample points. This in turn allows inter- 
actions between various segments within the same time step. 
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FIG. 12. Scattering of a Oaussian pulse by a six-point crown band 25.13 in. in circumference; 
22 spatial segments. The total wire length is 84 in. and wire radius 0.0625 in. Segment length 
A z  = c a t .  E a  = e x p { _ a 2 [ z / c  _ ( t  - -  tm~)] 2} with a = 2.0 • 109 and tmax = 1.06 • 10 -9 see. 
Frequency-domain calculations are plotted for comparison. 

The crown band is also a fine example of  a high Q scatterer with a highly peaked 
response curve in the frequency domain. The slow wave characteristic of  the 
zig-zag structure is exhibited by the ringing period of  the radiated field, which in 
turn is reflected by the resonance in the normalized radar cross section. Agreement 
with independently computed results is quite good for P / A  < 1.8, again in 
correspondence with the limit imposed by Eq. (37) where Na = 20, Nr = 11, 
L =  85 i n . , c T = P ,  a n d ~ =  1. 

CONCLUSIONS 

The numerical technique developed in Part I of  this paper has been applied 
to several wire structures. The time-domain results, obtained by numerically 
solving an integral equation in space-time, have been compared with available 

58x/I2/2-6 
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data in the frequency domain by Fourier transformation. The usefulness of the 
Lagrangian interpolation scheme, which permits the dependent variables to be 
determined accurately in the entire space-time cone and, therefore, allows the 
interactions between different spatial segments within the same time step to be 
accurately described, has been illustrated by treating structures with cusps where 
the distance between spatial segment centers could be less than cA t. This flexibility 
allows for analysis of more complicated structures at the minor expense of  
requiring a sparse matrix to be inverted at the initial stage of the computation. 

A simple formula for determining the highest frequency for which the results are 
accurate has been derived. It  can be widely used and has been shown to predict 
(L/h)max with reasonable accuracy. However, this formula has been validated only 
for cases where spatial-sample limiting was the dominant factor. 

The study presented here is one step towards the time-domain analysis of  
general thin-wire structures. The areas for future work are many. First and 
foremost, accuracy-modeling guidelines of  the type available in the frequency 
domain must be established for various classes of structures and different levels of 
interpolation. Also, techniques for handling multiple-wire junctions must be 
developed so that more complicated structures can be analyzed. 

Since the characteristics of  antennas can be greatly influenced by the presence 
of other obstacles (or the earth), we should also consider the general problem of  
time-domain analysis of antennas in the presence of a dissipative half-space. As 
a further extension, techniques such as Bennett's [7] for solid conducting bodies 
with straight wire appendages must be developed for analyzing solid conducting 
bodies with arbitrarily shaped wire appendages. Finally, problems involving 
nonlinearly loaded antennas and scatterers deserve detailed consideration. 
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